
Seminar Web Engineering WS 2018/2019

API Modeling and Description Languages
Alexander Senger and Shyam Agrawal

Professorship of Distributed and Self-organizing Systems
Technische Universität Chemnitz

Chemnitz, Germany

Number of words: 3278

1. Introduction
The purpose of this report is to investigate the practically usage and creation of APIs and
the importance of description languages. The report also suggests four description
languages which can be used in di�erent use cases. The ongoing research area Web
Engineering o�ers multiple construction approaches of di�erent Web-based
applications and distributed systems. One of those research areas is the modeling
process of APIs and their description languages. With a big spectrum of API usage areas
[1] and their design approaches the necessity of taking a closer look on the API
landscape became more important. With more complex APIs the need of describing such
cases became part of the modeling process as well.

2. API Modeling
API Modelling helps to identify the API s̓ Requirements. The main goal of API Modelling
is to identify and understand stakeholders and their activities. All the activities are
explored in detail in order to understand a better overall picture which can be used
while designing the API.

2.1 What is an API?

Nowadays connectivity is increasing day by day making life simpler. The world is
connected like never before. This instinct connectivity is due to the API or Application
Programming Interface. The de�nition in the textbooks as well as on internet is:

“In computer programming, an application programming interface (API) is a set of
subroutine de�nitions, communication protocols, and tools for building so�ware.” [2]

In simple terms, an API is an interface of a system to which client can interact with.
Almost every web service on the internet wants to expose their data. These data are
exposed through apis called the endpoints. These endpoints are used to interact as well
as exchange data with the web service. API acts an a messenger where your message is
delivered to the recipient and the response is delivered to you back. API helps the user to
use the functionality provided by the Web Service. Consider a Restaurant System, here
the customer has a list of items that can be ordered from the kitchen. Now here there is
a communication gap between the customer and the kitchen. Here waiter comes into the

scenario. The waiter acts a messenger takes the order from customer to kitchen and
deliver the dishes from kitchen back to the customer. There are various design factors
and practices which should be considered before Modelling an API.

2.2 Important Factors in API Design

While designing an api the following factors should be considered.

2.2.1 Target Audience

Designing an api with target audience is very important. Target audience are the actual
people who will be using the api. Here most important is to understand the API s̓
purpose. API user can be anyone. A new developer or an experienced developer. A new
�rst time developer can through the api documentation and use the api accordingly. An
experienced developer can update oneself regarding the api usage. The consumers of the
api are categorized into two types.

Direct Consumers

Consumer bene�ts from the direct usage of the speci�ed core services. For Example,
Uber has its own ecosystem. When an user uses an uber service, it is direct
communicating with uber s̓ servers using uber s̓ api.

Indirect Consumers

Consumer bene�ts from addon services apart from the core services. For Example,
Uber s̓ ecosystem can integrate services from Yelp. So now as soon as the user ends the
journey uber will suggest the user new restaurants nearby. Here uber will use yelps̓ api
to fetch the desired information. Here service of a complete di�erent segment is
provided which makes the consumers an indirect user of the addon service.

2.2.2 Business Drivers

Business drivers aims to understand api s̓ purpose. It focuses on to ful�l the business and
technological goal. To ful�l the business needs apis are categorized into 3 types.

Private API

Private APIs are quickly set up for internal teams to communicate within the
organization with low cost. For Example, Je� Bezos told all the teams at Amazon that "all
teams will expose their data and functionalities through interfaces and internal
communication should be carried out by interfaces only." [3]

Public API

Public APIs can be considered as a commercial api. It is majorly developed with a goal of
high adoption. This is the �nal endpoint which the developers will use to interact with
the web service.

Partner API

Partner Apis are a combination of private and public apis. It also serves the
organizations̓ internal as well as external business and technological needs. Amazon is
the perfect example of an organization with Partner APIs.

2.2.3 Resources

The technology stack is kept in mind while designing any API. The web service provider
should be aware of what type of data is stored and should be transferred. The
technological limitations sometimes plays an obstacle in long run. The technology used
might have limitation to support the api functionality. Everything should be noted before
designing an api.

2.3 Practices in Good API Design

There are few common practices that should be implemented for a good API design.

2.3.1 Understanding Resources and Collections

"A resource is an object that s̓ important enough to be referenced in itself. A group of
resources is called a collection" [4]. There is an unique identi�er which identi�es these
resources and collections. So these data should be addressed in simple format which
should be understandable by anyone who uses it. Consider the following example:

Examples
1. /products - This api helps to retrieve all products from the web service.
2. /products/321 - This api helps to retrieve all the information for a speci�c product.

2.3.2 Use Nouns and NOT the Verbs

Developers comes across this problem. Sometimes verbs are used in the url which
creates a confusion with use of http methods which performs the same function.
Therefore, It is recommended to use Nouns in the urls.

Examples
1. /products - Recommended
2. /getAllProducts - Not Recommended

2.3.3 HTTP Methods

Resources and collections can be accessed with the help of several methods for the data
being showcased by the API. There are various methods which can be used for di�erent
type of operation.

GET To get a resource or collection of resources.

POST To create a resource or collection of resources.

PUT To update the existing resource or collection of resources.

DELETE To delete the existing resource or the collection of resources.

Table 1: HTTP Methods [5]

2.3.4 HTTP Response Codes

There are plenty of HTTP Response codes but most of the time only 200 and 500 are
used. A good approach is to use the http response codes speci�c with the response type.

200 OK

201 CREATED

202 ACCEPTED

301 MOVED PERMANENTLY

400 BAD REQUEST

401 UNAUTHORIZED

403 FORBIDDEN

404 NOT FOUND

500 INTERNAL SERVER ERROR

502 BAD GATEWAY

Table 2: Status Codes [6]

2.3.5 Versioning

There might be changes in the resources which will need updation in the apis. So
versioning is introduced in order to track di�erent changes made to the apis. These
versioning can be also used as query parameters to access the data.

Examples
1. /v1/products
2. /v2/products

2.3.6 Pagination

Pagination is important where a large chunk of data is involved. If large chunk of data is
not handled properly it may take the system down. In pagination, “o�set” and “limit”
attributes are used. “Limit” relates to the size of data and “o�set” relates to the position
in the chunk where the data should start.

Example
1. /products?limit=25&o�set=50

Here the size of the data should be 25 and the o�set position should be 50.

2.3.7 Complex Parameters

Resources comes with a lot of properties. Complex Parameters are used with the
combination of these resource properties in order to extract data with a speci�c
property.

Example
1. GET /products?name=A̓BCʼ&price=20

In the above example a speci�c product is retrieved with a name “ABC” and price “20”.

2.3.8 Provide Examples

The best way to design and document an api is to provide examples of data request and
response. The developer gets an idea what type of data response is expected from the
server. Developers also learn what and how to call a function method in order to
communicate with the web service. Below example shows type of response a developer
can expect.

Example
1. { “products”: [{ “name”: “ABC”, "price": “20” }] }

3. API Description Languages (DL)
With evolving technologies of the web and the popularity of APIs, the need of having
guidelines for constructing and manage these interfaces were getting stronger.
Especially when the API wants to be understood and used by other developers, a
document for describing those processes is necessary to get a overall overview. In the
next sections the importance of description languages and how they di�er will be
demonstrated.

3.1 Definition
First of all in general API Description Languages (DLs) are speci�c languages for
describing APIs [7]. They are written in a document and tell one which methods and
data are used by the described API. There are also other information API description
languages provide like endpoints, schemas and message-transfer-types. Second, they
serve as a contract between service consumer and producer to make sure everyone is
following the right rules. Especially when it comes to using an API as a external
developer, they somehow need to understand how to call the methods. The last thing to
mention about API description languages is that they are human and machine readable.
Human readability means that documentations can be created out of a description
language �le to make it faster understandable and easy to read [7]. On the other hand
machine readability means that the machines on the internet are also able to process it.

3.2 Problems without Description Languages
To get a better understanding why description languages are so important it is needed to
come across typical problems which might occur in some situations where an API is
needed which was not selfmade. For the �rst example let s̓ take an API call from this
imaginary website: https://example.com/shoppingcart. This example should deliver the
current shopping cart with the common GET request but you canʼt really tell if there are
other valid HTTP methods for the website available like POST or DELETE. A simple
created documentation from a description language would handle this problem because
the documentation would list all methods which are used in the API as a overview. The
next problem describes the accessibility of an API. There are di�erent ways to structure
APIs for example with paths or queries. In the next example the goal is to access exactly
one item out of the warehouse store. A closer look at the two website GET requests:
https://example.com/warehouse/1 and https://example.com/warehouse?item=1, already
tells that both of them can be indeed valid GET requests. The outstanding problem here
is that it is still unknown which of the requests is heard by the API. Therefore a
description language can teach a proper usage of the current API. The last problem
which needs to be tackled is the expectation of the outcoming results. Working with APIs
mostly deliver structures which need to be processed further with a parser into other
data in order to be able to work with it. It s̓ really hard to achieve that without knowing

the responses of an API request. As an example the GET request
https://example.com/warehouse/1 works now and delivers one item of the warehouse as
a XML structure. As a modern developer one expect JSON as a response but it is more
likely to run into a issue here. To get a better understanding which method is delivering
what kind of result it is recommended to use a description language.

3.3 Four API Description Languages in Detail

In the following section four API description languages will be presented. The focus will
be to show the strengths and weaknesses of each language and to point out the need of
them. Those languages were chosen because they are still relevant nowadays and
popular in di�erent cases as well. It is worth to mention that there are more description
languages out there. In almost every description language there is the possibility to
automatically generate the description language out of the API code and vice versa.

3.3.1 Web Services Description Language (WSDL)

WSDL, in version 1.1, is the �rst description language which is created to describe SOAP
based web services. It is written in XML format therefore it is not very human readable
because when the document is growing it will be harder to take a quick look on it if
something needs to be changed. Even if XML is hard to read it still has its purpose. First
XML is used by the SOAP protocol and second XML is still used and can be interpreted by
many machines in the world. That makes XML platform independent [8]. When it comes
to the question what a WSDL would look like, it �rstly needs to be inspected what a
WSDL is doing. “A client can load a WSDL �le and know exactly which RPC-style
methods it can call, what arguments those methods expect, and which data types they
return.” [9] This also includes the di�erent endpoints the API is o�ering and their
transfer protocol types. Usually WSDL is using SOAP over HTTP as transportation
protocol for messages but other protocols like SMTP or FTP are possible.

Structure

Figure 1: A WSDL Structure Overview [10].

There are two versions of WSDL. The major change between both is the part where types
and messages got combined to the type element in the version 2.0. In the following
paragraph the WSDL version 1.1 will be brie�y covered because the 2.0 version was a
answer to the evolving REST community but another description language managed it
better. Therefore version 1.1 was better adopted by the industry [11]. A WSDL document,
which can be seen in Figure 1, is parted into two main sections: the abstraction section
and the concrete section. While the concrete section describes how the web service
communicates and where it can be reached for for instance via an URL, the abstraction
section describes what the web service does for instance which operations are available.

The concrete part consists of the two elements binding and service with its including
port element. The service element describes the endpoints of the API with their
reachable URLs and the binding element describes how the web service is bound to a
protocol. There are di�erent network protocols available but the most common one is
SOAP over HTTP. The abstraction section is the bigger part and consists of the elements
portType, messages and types. PortType describes all operations with their input
parameters and output result types [12]. To get a better understanding why the message
element exists it needs to take a look at the types element. The types element simply
de�nes all kinds of data types used by the web service. It can be either self de�ned data
structures or already existing types like integer. The problem is that the WSDL 1.1
SOAP/RPC-centric communication is limited. “For example, it cannot describe a variable
number of input parameters or a choice of responses [13].” It means that it is not
possible to have multiple data types as input or output declared if there is only the
possibility to insert one data type. Therefore a element which combines multiple data
types to one element is needed. It s̓ called the message element.

3.3.2 Web Application Description Language (WADL)

The answer to the growing REST popularity was WADL. Since SOAP was too complex and
being in�exible with errors, it wasnʼt the ideal solution for the web [14]. There also
became a need to describe contracts not only in a SOAP/RPC but also in a RESTful
manner. WADL �lled this gap with describing HTTP based web services and strictly
targeting the requirements of RESTful services by serving web resources. WADL isnʼt
only more lightweight and easier to understand, it als shows relationships between
resources and is able to deliver HTTP response codes like 200 OK. Even if WADL
supports REST, it is still written in XML.

Structure

<application>

 <grammars>

 <include href="Error.xsd"/>

 </grammars>

 <resources base="http://api.example.com/MyService/">

 <resource path="productCatalogue">

 <method name="GET" id="search">

 <request>

 <param name="results" style="query" type="xsd:int" default="10"/>

 </request>

 <response status="400">

 <representation mediaType="application/xml" element="Error"/>

 </response>

 </method>

 </resource>

 </resources>

</application>

Listing 1: A simple WADL document structure [15].

Visually WADL looks more simple and easier to read than WSDL which can be seen in
Listing 1. The application tag is parted into two main parts. Grammars where all
schemas and formats are de�ned which describe the exchanged data and the resources
tag with the base URI of the API which stores all resources with all operations provided
by the API.

3.3.3 RESTful API Modeling Language (RAML)

“WADL itself isn't too great; it doesn't really capture enough of the semantics of the
service to make it possible to tool things up.” [16] With the need of more powerful REST
description languages, two modern REST API description languages are presented.
RAML 1.0 is a YAML-based language. This makes it more readable. RAML supports the
API �rst approach which forces one to think about the structure of the API �rst. In some
situations designing an API might be di�cult, therefore prototypes can easily built with
the API mocking technique. API mocking is the process of simulating components in a
test environment without the need to write code. The design patterns can also be shown
to customers to make �exible decisions without messing around with code. RAML is also
used by many big companies like Spotify or Sky [17]. Behind RAML stands a large
community with handy tools like RAML API-Designer which is a great online editor

including code-completion and instant method testing support. Another great tool to
mention is the API console which creates automatically a full documentation out of the
API in HTML format.

Structure

#%RAML 1.0
title: Product Catalogue API
version: v1
protocols: [http, https]
baseUri: https://api.Product-Catalogue.com
mediaType: [application/json, application/xml]

/products:
 /{productID}:
 get:
 queryParameters:
 productID:
 description: The ID of the product
 type: integer
 required: true
 responses:
 200:
 body:
 application/json:
 example: {"productID": 1, "productType": "chair", "price": "7.9

Listing 2: A simple RAML document structure [18].

As it is shown in Listing 2 the RAML �le splits into the metadata part and the resources
part. The metadata usually describe a quick overview of the use protocols, the base URI
and the supported mediaTypes. There are also more options available like schemas (type
in RAML 0.8), documentations and security options. The resources have a detailed
structurering now with many sub elements. The idea of input parameters and responses
remain the same. It is also possible to include example responses for API mocking.

3.3.4 OpenAPI

As the second modern API description language OpenAPI was chosen, which was
originally known as Swagger 2.0. “It became a separate project in 2016 [...]” with a
consortium of industry experts like IBM or Microso� [19]. There are two di�erences
between RAML and OpenAPI. While RAML supports YAML as language format, OpenAPI
also supports JSON as a language format. OpenAPI doesnʼt only support the API �rst
approach, but also the code �rst approach. Like RAML, OpenAPI also has a big
community with a lot of tools like the Swagger Editor, a online OpenAPI editor with
code-completion and live editing. If there is a plan to create a documentation, Swagger
UI can be used for creating a overview of all API methods.

Structure

Figure 2: A OpenAPI Structure Overview [20].

The Figure 2 shows that there are a couple of changes happened between Swagger 2.0
and OpenAPI 3.0. There are two major changes which will be covered. The �rst change
was the support of multiple hosts in version 3.0 because 2.0 only supported one host with
its basePath and schemas. The second major change was to get rid of the two elements
produces and consumes which moved to the components element. In 2.0 it was only
possible to choose one media type for the whole API. Now in 3.0 this changed and every
path can have its own media type. As a minor change the three bottom elements in 2.0
got a rename to the components element with some additional subelements [21].

3.4 Choosing the right description language

When it comes to choosing a description language for the next API project there are
several conditions to think about. First of all there is the decision between a SOAP and a
REST API. When it gets into the SOAP direction the best choice would be WSDL because
its made for complex enterprise systems with SOAP based web services [14]. On the
other hand there are more options for a REST API available. WADL is by far the oldest
option to think about but its not really used that o�en anymore. “WADL appeals to people
coming from the SOAP world [...].” [22] RAML and OpenAPI are more attractive
nowadays with a lot of community tools but how to decide between both? In the end it
comes down to minor di�erences like the language structure and the design approach
but in general both languages will do a great job. It is recommended using OpenAPI
because its more up to date with its 3.0 version and has a consortium who tries to
standardize APIs.

4. Demo
The idea of the demo is to create a todo list application. The application will help to add,
edit, delete, �nd and display daily tasks as shown in the Fig 3. These tasks will accessed
through an API. The API is designed using Swagger 2.0. Swagger framework is based on

OpenAPI speci�cations. The API is created using the Design-First approach. The
business logic is written in JavaScript. An unique ID is generated automatically and
assigned to the tasks.

Figure 3: Swagger Demo Overview.

The online Swagger editor lets you design the API and then automatically generate client
and server stubs as shown in Fig 4.

Figure 4: Swagger Online Editor.

5. Bibliography
[1] Medjaoui, Mehdi (2018, November). The API Landscape [Online]. Available:
https://www.apidayssf.com/api-landscape (Accessed: Jan. 02, 2019)

https://www.apidayssf.com/api-landscape

[2] Wikipedia [Online]. Available:
https://en.wikipedia.org/wiki/Application_programming_interface (Accessed: Dec. 28,
2018)

[3] Ross Mason (2017 August). ACCELERATING INNOVATION IN THE DIGITAL AGE
[Online]. Available: https://www.cio.com/article/3218667/digital-transformation/have-
you-had-your-bezos-moment-what-you-can-learn-from-amazon.html (Accessed: Jan.
07, 2019)

[4] Best Practices in API Design [Online]. Available:
https://swagger.io/resources/articles/best-practices-in-api-design/ (Accessed: Jan. 07,
2019)

[5] HTTP Method De�nitions [Online]. Available:
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html (Accessed: Jan. 07, 2019)

[6] HTTP Status Code De�nitions [Online]. Available:
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html (Accessed: Jan. 07, 2019)

[7] mattbiehl (2015, June 17). What are API Description Languages? [Online]. Available:
https://api-university.com/blog/what-are-api-description-languages (Accessed: Dec. 27,
2018)

[8] Knowledge Base (2015, December 02). SOAP vs REST [Online]. Available:
http://blog.empeccableweb.com/wp/2015/12/02/soap-vs-rest (Accessed: Dec. 28, 2018)

[9] Bekkar, Sanae (2016, February 23). WSDL VS WADL [Online]. Available:
https://sanaebekkar.wordpress.com/2016/02/23/wsdl-vs-wadl (Accessed: Dec. 28, 2018)

[10] Wikipedia [Online]. Available:
https://upload.wikimedia.org/wikipedia/commons/c/c2/WSDL_11vs20.png?
1544693032133 (Accessed: Dec. 28, 2018)

[11] Murgante, Beniamino et al. "Computational Science and Its Applications – ICCSA
2013". 13th International Conference. Ho Chi Minh City, Vietnam. Proceedings, Part II.
June 24-27 2013

[12] Christensen, Erik and Curbera, Francisco and Meredith, Greg and Weerawarana,
Sanjiva (2001, March 15). Web Services Description Language (WSDL) 1.1 [Online].
Available: https://www.w3.org/TR/2001/NOTE-wsdl-20010315 (Accessed: Dec. 29, 2018)

[13] Kalali, Masoud (2009, April 23). A Look at WSDL 2.0 [Online]. Available:
https://dzone.com/articles/look-wsdl-20 (Accessed: Dec. 29, 2018)

[14] Hemel, Zef (2008, January 8). Why WADL is Awesome [Online]. Available:
https://zef.me/why-wadl-is-awesome-5b811e32c74c (Accessed: Dec. 29, 2018)

[15] A simpi�ed and modi�ed version of the W3C WADL example [Online]. Available:
https://www.w3.org/Submission/wadl (Accessed: Dec. 29, 2018)

[16] Fellows, Donal (2012, February 7). Should I use WADL to describe my RESTful API?
[Online]. Available: https://so�wareengineering.stackexchange.com/a/133713
(Accessed: Dec. 29, 2018)

[17] RAML Speci�cation [Online]. Available: https://raml.org/enterprises (Accessed:
Dec. 29, 2018)

https://en.wikipedia.org/wiki/Application_programming_interface
https://www.cio.com/article/3218667/digital-transformation/have-you-had-your-bezos-moment-what-you-can-learn-from-amazon.html
https://swagger.io/resources/articles/best-practices-in-api-design/
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://api-university.com/blog/what-are-api-description-languages/
http://blog.empeccableweb.com/wp/2015/12/02/soap-vs-rest/
https://sanaebekkar.wordpress.com/2016/02/23/wsdl-vs-wadl/
https://upload.wikimedia.org/wikipedia/commons/c/c2/WSDL_11vs20.png?1544693032133
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://dzone.com/articles/look-wsdl-20
https://zef.me/why-wadl-is-awesome-5b811e32c74c
https://www.w3.org/Submission/wadl/
https://softwareengineering.stackexchange.com/a/133713
https://raml.org/enterprises

[18] A simpi�ed and modi�ed version of the RAML Speci�cation example [Online].
Available: https://raml.org/developers/raml-100-tutorial (Accessed: Dec. 29, 2018)

[19] Wikipedia: OpenAPI Speci�cation [Online]. Available:
https://en.wikipedia.org/wiki/OpenAPI_Speci�cation?oldformat=true (Accessed: Dec.
30, 2018)

[20] Open API Initiative (2016, October 3). OpenAPI Speci�cation [Online]. Available:
https://www.openapis.org/news/blogs/2016/10/tdc-structural-improvements-
explaining-30-spec-part-2 (Accessed: Dec. 30, 2018)

[21] ReadmeBlog (2017, March 20). A Visual Guide to What's New in Swagger 3.0 [Online].
Available: https://blog.readme.io/an-example-�lled-guide-to-swagger-3-2 (Accessed:
Dec. 30, 2018)

[22] Miller, Darrel (2009, August 21). What is the reason for using WADL? [Online].
Available: https://stackover�ow.com/a/1314326/10192487 (Accessed: Jan. 01, 2019)

https://raml.org/developers/raml-100-tutorial
https://en.wikipedia.org/wiki/OpenAPI_Specification?oldformat=true
https://www.openapis.org/news/blogs/2016/10/tdc-structural-improvements-explaining-30-spec-part-2
https://blog.readme.io/an-example-filled-guide-to-swagger-3-2/
https://stackoverflow.com/a/1314326/10192487

