
1

Faculty of Computer Science

Prof. Alexander Adam, Daniel Richter

Datenbanken und Web Techniken

Project Report (SS 2018)

DownTown Diner
Restaurant Hunter

Chemnitz, 1. July 2018

Team members Matriculation no.
Shyam Ashish Agrawal (Master in Web Engineering) 479026
Pallavi Singh (Master in Web Engineering) 485344

2

 Table of content

1. Introduction….………………………………………………………………...4
2. Resources……………………………….……………………………………….5

2.1. Technologies……………….……………………………………….5
2.2. Database Selection…….…………………………………….….7

3. Project Flow…………………………………………………………………....8
3.1. Crawling and Database………………………………………...8
3.2. REST API……………………………………………………………….9
3.3. Frontend…………………………………………………………….11

4. Practical Demonstration…………………………………………………12
5. Conclusion……………………………………………………………………..16
6. Appendix………………………………………………………………………..17

3

Work Split Details:

Team Member Work Details for the Project

Shyam Ashish Agrawal

1) Project Structure and

Overview (Backend)
2) Web Crawling
3) Database
4) REST API

Pallavi Singh

1) Website Design of the Project

(front-end)
2) Handling Data From API

4

1. Introduction

Manually finding the Restaurant Dishes and its Price is time

consuming and difficult nowadays. The aim of this project is to

provide a system which finds Dishes from different Restaurants

and provides necessary information about name of the

Restaurant, address and prices of each dish available.

The goal of this task is to create a website that is able to fetch,

store and visualization data of Downtown Dinner. The benefits

of this service are able to fetch the real time data from the three

different restaurants.

Customers can search the dishes based on keywords and will

get the information about the Ingredients, Price and

Description. Customers also get the details of all the available

dishes and opening hours of restaurants by clicking any of the

dishes.

5

2. Resources

2.1 Technologies

The System is Developed Using Node.js Technology. Node.js

is an open source, cross-platform runtime environment for

developing server-side and networking applications. Node.js

applications are written in JavaScript and can be run within the

Node.js runtime on OS X, Microsoft Windows, and Linux.

Following are some of the important features that make Node.js

the first choice of web development:

 Asynchronous and Event Driven

 Very Fast

 Single Threaded but Highly Scalable

 No Buffering

Why We have selected Node.js

Firstly, using Node.js as our server technology gives our team

a great boost that comes from using the same language on

both the front end and the back end. This means that our team

is more efficient and cross-functional, which, in turn, leads to

lower development costs.

We have also used different Node.js Frameworks. Below are

the details:

1. Request - Package for HTTP

Request provides an HTTP request API on the client and

server. To use these functions, add the Request package to

your project by using your terminal.

6

2. Cheerio - Package for jQuery-Traversing

jQuery traversing, which means "move through", are used to

"find" (or select) HTML elements based on their relation to

other elements. Start with one selection and move through that

selection until you reach the elements you desire.

3. Mongoose - Package for Mongo DB

Mongoose is an Object Document Mapper (ODM). This means

that Mongoose allows you to define objects with a strongly-

typed schema that is mapped to a MongoDB document.

4. Express - Package for Web Framework, Rest API

Express is a minimal and flexible Node.js web application

framework that provides a robust set of features for web and

mobile applications. With a myriad of HTTP utility methods and

middleware at your disposal, creating a robust API is quick and

easy.

5. body-parser – Package for Middleware

In order to read HTTP POST data, we have to use "body-

parser" node module. Body-parser is a piece of express

middleware that reads a form's input and stores it as a

JavaScript object accessible through “req.body”.

We have used scripting language like JavaScript, AJAX. For

styling, the web pages we have used Bootstrap and CSS.

For Integrated Development Environment, we have used

Microsoft Visual Studio Code 2018.

7

2.2 Database Selection

The System is using MongoDB as the database. MongoDB is

a free and open-source cross-platform document-oriented

database program. Classified as a NoSQL database program,

MongoDB uses JSON-like documents with schemas.

In the project, System is using mLab: Database-as-a-Service

for MongoDB. mLab is a fully managed cloud database service

featuring automated provisioning and scaling of MongoDB

databases, backup and recovery, 24/7 monitoring and alerting,

web-based management tools, and expert support. mLab's

Database-as-a-Service platform powers hundreds of thousands

of databases across AWS, Azure, and Google and allows

developers to focus their attention on product development

instead of operations.

8

3. Project Flow

3.1 Crawling & Database

A crawler is a program that visits Web sites and reads their

pages and other information in order to create entries for a

search engine index. Crawlers apparently gained the name

because they crawl through a site a page at a time. In the

Project, System crawls the data from three different restaurants

and the crawled data is being saved in the database. And at the

same time, it will replace the existing data with the new data.

function crawlRestTwoData()

{

 var url = 'http://www.schroedingers.de/speisekarte-schroedingers'

 request(url, function(err, response, html)

 {

 if(!err)

 {

 // Removing The Existing Data Inorder To Update the Database With

New Data

 restTwoModel.collection.remove({}, function(err)

 {

 if(err){ throw err; }

 // else {console.log('Restaurant TWO Data removed from db');}

 });

 // restTwoModel.collection.drop();

 // Crawling RestaurantTwo Data

 var $ = cheerio.load(html);

 var dataList2 = $('.pmtitle');

 dataList2.each(function(index)

 {

 restaurantTwo.itemName =

$('.pmtitle').eq(index).text().trim();

 restaurantTwo.price = $('.pmprice').eq(index).text().trim();

 restaurantTwo.restName = 'Bistro Schroeders';

9

 restaurantTwo.restDetails = 'Bistro Schroeders

Helmholtzstrasse 23 10587 Berlin. Opening hours: Mon - Fri: 11:00 - 16:00.

Phone: 0160 34 855 38';

 restaurantTwo.timeStamp = new Date();

 // console.log(restaurantTwo);

 // Saving Crawled Data to Database

 restTwoModel.create(restaurantTwo, function(err)

 {

 if(err) { throw err; }

 });

 });

 console.log('Restaurant Two Data Saved Into DB');

 }

 });

}

3.2 REST API

A RESTful API is an application program interface (API) that

uses HTTP requests to GET, PUT, POST and DELETE data.

Here System is working with GET and POST Methods.

GET Method

For Retrieving information from the server, System uses GET

method. When User is performing a `GET` request, the REST

API retrieves all data in the database and sends it back to User.

In other words, a `GET` request performs a `READ` operation.

router.get('/allDishes', function(req, res)

{

 //Combining Data From all Models

 Promise.all(

 [

 restOneModel.find(),

10

 restTwoModel.find(),

 restThreeModel.find()

]).then(allData =>

 {

 // Concatinating the data into Single Array

 var combinedData =

allData[0].concat(allData[1]).concat(allData[2]);

 console.log('User Requested For all the Dishes from Database');

 res.json(combinedData);

 }).catch(err =>

 {

 console.error("something is wrong",err);

 })

});

POST Method

System is using POST Method in order to accept an input

String from the User and send the String inside body of POST

Request. REST API receives the string and searches the

Database based on the String and returns the Result of the

Query to the User

router.post('/search', function(req, res)

{

 if(req.body.name)

 {

 var srcitem = req.body.name; //Input String From User

 console.log("The Submitted String is: " + srcitem);

 //Query For Searching Based on Letters

 /* var query = {

 $or: [

 {"itemName": {$regex: ".*" + srcitem + ".*",

$options:"i"}},

 {"itemDesc": {$regex: ".*" + srcitem + ".*",

$options:"i"}},

]

 }

 */

 //Query For Searching Based on Keywords

11

 var query = { $text: {$search: srcitem} } ;

 // Combining Data from all models based on query

 Promise.all([

 restOneModel.find(query),

 restTwoModel.find(query),

 restThreeModel.find(query)

]).then(allData =>

 {

 // Concatinating the data into Single Array

 var combinedData =

allData[0].concat(allData[1]).concat(allData[2]);

 // console.log(combinedData);

 if(combinedData == '') { console.log('keywords did

not Match'); }

 res.json(combinedData);

 }).catch(err =>

 {

 console.error("something is wrong",err);

 })

 }

 else { console.log('Empty Data! Please Insert a String'); }

});

3.3 Frontend

At the Frontend, System uses JavaScript to send AJAX GET

and POST request to REST API.

System also uses JavaScript to handle chunks of data received

from the REST API.

12

4. Practical Demonstration

In DownTown Diner, Main page consist of a Search Box along

with a Button to Search the Database. This Web Application is

easy to use by writing the Keyword in the Search box and User

will get the Dishes from the Restaurants, Prices and

Ingredients. Thereafter User can click one of the Dishes to get

the Restaurant Details. Apart from this, User can also get a list

of all the Available Dishes by clicking on "All Available Dishes”

button from the Database.

 Fig.1 Displaying the Main Page of DownTown Diner

13

We have added event listener to “Search” and “All Available

Dishes” buttons.

document.querySelector('form').addEventListener('submit',searchString);

document.getElementById('allDishes').addEventListener('click',getAllDishes);

We are using AJAX method for fetching all the dishes from the

database and sending the request.

var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function()

 {

 if(this.readyState == 4 && this.status == 200)

 {

 myArr = JSON.parse(this.responseText);

 myFunc(myArr); // Sending the Received data to a

function to process further

 }

 }

14

Fig.2 Searching Dishes based on Keywords

 Fig.3 Displays the Dishes from all Restaurant

15

Fig.4 Clicking the Dish Displays the Restaurant Details

Fig.5 Displays All Available Dishes

16

 Fig.6 Clicking the Dish Displays the Restaurant Details

5. Conclusion

The Web Application helps to get Dishes from different

Restaurants along with their Descriptions. It helps the User to

Differentiate between Dishes from different Restaurants.

The Application Crawls and Stores data in Real Time. Overall

the Application provides all the necessary Information to the

User in a more Efficient way.

17

6. Appendix

Show All Dishes

Returns an array of JSON data about all the available dishes

 URL

 /allDishes

 Method

GET

 URL Params

None

 Data Params

None

 Success Response:

o Code: 200

Content:

[

{

"_id": "5b3777774f0f4d155061adef",

"itemName": "Oliven & Käse",

"itemDesc": "Hauseingelegte Oliven &

marinierte Walnuss Käsewürfel. \nJe eine

Schale, dazu knuspriges Ciabatta",

"price": "4.90 €",

"restName": "TILLMANN'S",

18

"restDetails": "TILLMANN'S. Address: In

Terminal 3, Brückenstraße 17, 09111

Chemnitz. opening hours: Monday - Friday -

from 11.00 am. Kontakt: 0371 355 87 63 ",

"timeStamp": "Sat Jun 30 2018 14:28:38

GMT+0200 (W. Europe Summer Time)"

},

{}, {}, {},so on

]

 Error Response:

None

 Sample Call:
 var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function()

 { if(this.readyState == 4 && this.status == 200)

 {

 Console.log(JSON.parse(this.responseText));

 }

 }

 xhttp.open('GET', '/allDishes', true);

 // xhttp.setRequestHeader('Content-Type',

'application/json');

 xhttp.send();

19

Show Dishes Based on Search

Returns Array of JSON data about dishes from the Database

based on keyword Provided by the User.

 URL

 /search

 Method

POST

 URL Params

None

 Data Params

{“name”: “salat”}

 Success Response:

o Code: 200

Content:

[

{

"_id": "5b3777774f0f4d155061adf4",

"itemName": "Rucola-Salat",

"itemDesc": "Bunter Salat von Rucola, mit

Walnüssen, \nTomaten und einer Orangen-

Vinaigrette getoppt, dazu Oliven Ciabatta",

"price": "7.90 €",

"restName": "TILLMANN'S",

"restDetails": "TILLMANN'S. Address: In

Terminal 3, Brückenstraße 17, 09111

Chemnitz. opening hours: Monday - Friday -

from 11.00 am. Kontakt: 0371 355 87 63 ",

20

"timeStamp": "Sat Jun 30 2018 14:28:39

GMT+0200 (W. Europe Summer Time)"

},

{}, {}, {},so on

]

 Error Response:

None

 Sample Call:

var input1 = document.getElementById('data1').value;

 console.log(input1);

 var newEntry = { 'name': input1 };

 console.log(newEntry);

 var xhttp = new XMLHttpRequest();

 xhttp.onreadystatechange = function()

 { if(this.readyState == 4 && this.status == 200)

 {

 Console.log(JSON.parse(this.responseText));

 }

 }

 xhttp.open('POST', '/search', true);

 xhttp.setRequestHeader('Content-Type', 'application/json');

 xhttp.send(JSON.stringify(newEntry));

	Faculty of Computer Science
	Datenbanken und Web Techniken
	Project Report (SS 2018)
	DownTown Diner
	Restaurant Hunter
	Chemnitz, 1. July 2018
	Team members Matriculation no.
	Shyam Ashish Agrawal (Master in Web Engineering) 479026
	Pallavi Singh (Master in Web Engineering) 485344
	Table of content
	1. Introduction….………………………………………………………………...4
	2. Resources……………………………….……………………………………….5
	2.1. Technologies……………….……………………………………….5
	2.2. Database Selection…….…………………………………….….7
	3. Project Flow…………………………………………………………………....8
	3.1. Crawling and Database………………………………………...8
	3.2. REST API……………………………………………………………….9
	3.3. Frontend…………………………………………………………….11
	4. Practical Demonstration…………………………………………………12
	5. Conclusion……………………………………………………………………..16
	6. Appendix………………………………………………………………………..17
	Work Split Details:
	1. Introduction

